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Failure Mode |: Data Violate Assumptions

Assumption: Training data is a good representation of the testing

m

In the real world:
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Failure Mode |: Data Violate Assumptions

Degraded Visual Environments (DVEs): low-resolution,
rain, low-light, haze ...

... cause degradations for visual understanding:
reduced contrasts, detail occlusions, abnormal
illumination, fainted surfaces and color shift...

* Itis related to, but not just, image restoration
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Failure Mode |: Data Violate Assumptions

Synthetic: .}’:

=%

(Training)

Distribution

Real World: Shift

(Testing)




Failure Mode Il: Exploration into Unseen Domain

Exploration

State space
it sees in
data
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Key: Extrapolation and Model Confidence

Confidence in the If 1 fail, | should fail gently
new domain?
~ ~ -
O Check constraint satisfaction
\ in the new domain
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Failure Mode IIl: Malicious Adversary

Adversarial Noise

maximize £(hg(z + 9), y).

19]|<e

1 93.3% gibbon

minimize — max {(hg(x +9),y).
6 |5] g Aol +9),9)

w,yES'

Classified as STOP Misclassified as YIELD

Goodfellow et al, “Explaining and Harnessing Adversarial Examples”, ICLR 2015.



Failure Mode Ill: Malicious Adversary




Research Questions:

How to produce robust extrapolation under various
unexpected distribution shifts in computer vision?

We will go through many possible answers:
* Data-level

* Enhancing images m

* Using synthetic data to add variations Y/

» Model-level: / |
* Domain adaptation and generalization s
e Adversarial defense S
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Visual Degradation

Data Acquisition

Degradation before Degradation in Degradation after
Data Acquisition Data Acquisition Data Acquisition

 Heavy Rain/Snow * Downsample * Scratches

e Underwater * Motion Blur « Watermark

 Low Light * System Noise *  Mildew

e Haze/Sandstorm * Optical Distortion « Compression Loss



Restoration and Enhancement: Tons of Tasks

llllllll
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Underwater Dehazing Inpainting Super Resolution
Enhancement

Denoising Low Light Enhancement




Goal of Image Enhancement Diversified

* From traditional signal processing (reconstruction) viewpoint
e Full-reference metrics: PSNR, SSIM, etc.

e ... to human perception (subjective quality)-based
* No-reference metrics (e.g., NIQE), and human study

* ... And to task-oriented, “end utility”-based
» Typical examples: dehazing, deraining, (extreme) light, underwater ...
* Representative datasets: RESIDE dehazing (TIP’18), MPID deraining (CVPR’19)
* CVPR UG2+ Challenge: http://www.ug2challenge.org



http://www.ug2challenge.org/

Learning to Enhance Images

e Data-driven training of “end-to-end” models (usually assuming “pairs”)

* Prior/physical information can still be helpful
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Low Quality Image/Video Data-Driven Solution

High Quality Image/Video



Image Denoising

Level Vision Problem

implest Low-

S
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Image Denoising

» Simplest Low-Level Vision Problem

Magic

Denoising
Algorithm




Conventional Methods

INng —

1S

Image Deno

* Collaborative Filtering

Non-local Mean, BM3D, etc




Image Denoising — Conventional Methods

* Collaborative Filtering
* Non-local Mean, BM3D, etc

* Piece-wise Smooth
* Total Variation, Tikhonov Regularization, etc
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Image Denoising — Conventional Methods

1 H H Observed Randomized Inverse Fourier Few active
* COI Ia borat|ve F' Iter' ng projections beamforming weights Macrix frequencies
* Non-local Mean, BM3D, etc l

* Piece-wise Smooth
» Total Variation, Tikhonov Regularization, etc

e Sparsity
* Discrete Cosine Transform (DCT), Wavelets, etc
* Dictionary Learning: KSVD, OMP, Lasso, etc

* Analysis KSVD, Transform Learning, etc




Conventional Deep Learning

* Shallow Model  Deep Model | )

. Equivalently one free layer . Multiple free layers



Conventional Deep Learning

* Unsupervised  Supervised

. No training corpus needed . Training corpus needed ?
. Data efficient . Data inefficient o



Conventional Deep Learning

>

* Inverse Problem  Inverse Problem
. Assumption & Understanding . Little assumption
of the Data «  Almost free model 3
. Regularizer & structures of the . Few work until recent r
Model

. Flexible



Image Denoising by Deep Learning

Natural Idea: train a denoising autoencoder, that regresses clean images from noisy ones

It is not easy for deep networks to outperform classical methods such as BM3D!!
* BM3D is shown to be better at dealing with self-repeating regular structures

How to outperform BM3D using a deep network denoiser? Some verified tips:
* The model richness is large enough, i.e. enough hidden layers with sufficiently many hidden units.

e The patch size is chosen large enough, i.e. a patch contains enough information to fit a complicated
denoising function that covers the long tail.

* The chosen training set is large enough

Other benefits of deep network denoiser:

e The testing speed of deep networks is much faster than BM3D, KSVD etc., benefiting from GPU.
* Deep networks can be generalized to other noise types, if correctly supplied in training.

Recent works show great progress!
* Check out Git repo: https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art



https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art

Image Denoising by Deep Learning

» Reference: “Image denoising: Can plain Neural Networks compete with BM3D?”

clean (name: 008934)

e

clean (name: barbara) noisy (o = 25)PSNR:20.19dB BM3D: PSNR:30.67dB ours: PSNR:29.21dB



Image Deblurring

* Blurred Measurement:

o - 0O

o - 0O
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Image Deblurring

e Estimate the stable image:

Algorithm




Image Deblurring

* Non-blind Image Deblurring

e Suppose you know the blurring kernel, M.

*xXx=f(y,M)

 All training data need to have consistent M, as the testing data



Image Deblurring

* Non-blind Image Deblurring

e Suppose you know the blurring kernel, M.

*xXx=f0,M)

 All training data need to have consistent M, as the testing data

 Blind Image Deblurring — More challenging yet practical problem

» Estimate both the image, and the blurring kernel

s XM} =f(y)



Image Deblurring by Deep Learning

Reference: “Deep convolutional neural network for image deconvolution”

» Key Technical Features:

* Treat deblurring as a deconvolution task, and the deconvolution operation can be approximated by a convolutional network
with very large filter sizes

* Concatenation of deconvolution CNN module with another denoising CNN module to suppress artifacts and reject outliers
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=

64x184x38 64x64x38 49x49x512
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Deconvolution Sub-Network QOutlier Rejection Sub-Network I Restoration




(d) Sunet al. [1%]

(e) Xu et al. [33] (f) Pan et al. [15] (g) DeepDeblur [?] (h) SRN [7]



Image Super-Resolution

H(z)
Low pass filter

2 H(®)|

v(n)

M

“|  Down sampler

y(n)



Image Super-Resolution

e Estimate the stable image: Xx=f(y)

Magic

Super-Resolution
Algorithm




Image Super Resolution by Deep Learning

Reference: “Image super-resolution using deep convolutional networks”

» Key Technical Features:
e Learns an end-to-end mapping from low to high-resolution images as a deep CNN
e Closely mimic the traditional SR pipeline: LR feature extraction -> coupled LR-HR feature space mapping -> HR
Image reconstruction

n, feature maps ny feature maps
of low-resolution image of high-resolution image
, 1x1 Ja X f3
Low-resolution M S R L = e i ‘ High-resolution
image (input) | )= == e N il | image (output)
o P
s P > 5
i
| |
Patch extraction Non-linear mapping Reconstruction

and representation



Image Super Resolution by Deep Learning
(2013 —2017)
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Super-resolution results of “148026” (B100) with scale factor x3 (from VDSR paper)

L

Ground Truth
(PSNR, SSIM)

A+ [22
(22.92, 0.7379)

RFL [18]
(22.90, 0.7332)

SelfEx [11]
(23.00, 0.7439)

SRCNN [5]
(23.15, 0.7487)

VDSR (Ours)
(23.50, 0.7777)




New Trends?

New topic: dehazing, deraining, low light enhancement, etc.

New goal: human perception v.s. machine consumption

New setting: from supervised to unsupervised training (no “GT”)
* ...or relying on “synthetic pairs”

New domain: medical images, infrared images, remote sensing images, etc.

New concern: “All-in-one” adaptivity, efficient implementation, etc.



Lots of Progress — but “not there” yet

Example:




Shortage of Real-World Generalization

* Most SOTA algorithms are trained with { , corrupted} paired data

» Such paired training data is usually collected by synthesis (assuming known
degradation model), which typically oversimplifies the real-world degradations

* As aresult, the trained model “overfits” simpler degradation process and
generalizes poorly to real visual degradations

* Real-world collection of paired data?

* Can be done in small scale and/or in controlled lab environments
* e.g. some recent datasets in light enhancement, and raindrop removal

* Very difficult to “scale up”, sometimes maybe impossible



EnlightenGAN: Deep Light Enhancement without Paired Supervision

Goal: Light enhancement made automatic, adaptive, and artifact-free



From Supervised to Unsupervised Enhancement

* EnlightenGAN is the first work that successfully introduces unpaired
training to low-light image enhancement.

* |t only needs one low-light set A and another normal-light set B to train, while
!

* What makes Unpaired Training unique and attractive?
* |t removes the dependency on paired training data
* Hence enabling us to train with massive images from different domains
* It also avoids overfitting any specific data generation/imaging protocol
 ...that previous works implicitly rely on, leading to stronger generalization.
* |t makes EnlightenGAN particularly easy and flexible to be adapted
* when enhancing real-world low-light images from completely different/unseen domains



Model Architecture

Global Discriminator
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Paper: https://arxiv.org/abs/1906.06972
Code: https://github.com/VITA-Group/EnlightenGAN



https://arxiv.org/abs/1906.06972
https://github.com/VITA-Group/EnlightenGAN

Key Components that make it work

* Using a large, real unpaired training dataset
* We assemble a mixture of 914 low light and 1016 normal light images (no need for any pair)
* From several datasets and HDR sources, with a wide range of image quality factors)

 Combining a global and a local patch discriminator
* Taking care of both global composition, and local fine details

* Self Feature-Preserving Loss
 Computing VGG distance between input-output images
* Based on our empirical observation that VGG features are robust to light changes

* Self-Regularized Attention

* We take the illumination channel I of the input RGB image, normalize it to [0,1], and then use 1 -1
as our self-regularized attention map.

* We then resize the attention map and multiply it with all intermediate feature maps the output.
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[New!] Frustratingly Easy Adaptation to New Data

nput EnlightenGAN EnlightenGAN-N




PreProcessing for Improving Classification

Bottle

Motorbike

A

* We applying our pretrained EnlightenGAN as a pre-processing step on the testing set of the ExDark
dataset , followed by passing through another ImageNet-pretrained ResNet-50 classifier.

|t improves the classification accuracy from 22.02% (top-1) and 39.46% (top-5), to 23.94% (top-1)
and 40.92% (top-5) after enhancement.
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Uncertainty & Robustness for Out-of-Distribution Generalization
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What do we mean by Uncertainty?

Return a distribution over predictions

rather than a single prediction.

e Classification: Output label along with
its confidence.
e Regression: Output mean along with

its variance.

Good uncertainty estimates quantify when we

can trust the model’s predictions.

X

Image credit. Eric Nalisnick



What do we mean by Out-of-Distribution Robustness?

1.1.D. Prest{VX) = PrranViX)

0.0.D. pTEST(y’X) 7 pTRAIN(y’X)

Examples of dataset shift:

e Covariate shift. Distribution of features p(x) changes and p(y|x) is fixed.
e Open-set recognition. New classes may appear at test time.

e Label shift. Distribution of labels p(y) changes and p(x|y) is fixed.



ImageNet-C: Varying Intensity for Dataset Shift

Clean Severity = 1 Severity = 2 Severity = 3

o el

Severity = 4

%! e

Severity =5

-

Increasing dataset shift

Gaussian Noise  Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur
= = 2= )& : o -..;‘,‘%‘.! - ] Far -

[.I.D test set

Motion Blur Zoom Blur Snow Frost Fog

Image source: Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations, Hendrycks & Dietterich, 2019.



https://arxiv.org/abs/1903.12261

Neural networks do not generalize under covariate shift

Clean Severity =1  Severity = 2 Severity = 3 Severity = 4 Severity = 5

[ . X ™
-3 o » ’<

® ACCU racy drOpS Wlth 0.7 - - s Baseline NN
increasing shift on o % ;

Imagenet-C -has e
< 0.3 -
0.2 - e s
; :

0.1
0.0 -

TGISt i é Shift intensity é
e But do the models
know that they are

less accurate?

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019



https://arxiv.org/abs/1906.02530

Neural networks do not know when they don’t know

Clean Severity = 1

Severity = 2 Severity = 3 Severity = 4 Severity = 5

AN ot -

o Accu racy drops Wlth 0.7 4 o EEE Baseline NN
increasing shift on o % ;

Imagenet-C 5 0 e
< 0.3
0.2 e s
; :

0.1-

0.0 = I I 1 |

Test 1 2 3
Shift intensity

e Quality of uncertainty zz: ——
degrades with shift 020
-> “overconfident ~e
mistakes” °'1°: ‘ ; ?

0.05

Tést 4

Shift intensity



Models assign high confidence predictions to OOD inputs

10

20 H High uncertainty
(low confidence)
15 1 15
08
10 1 10
05 1 05 0.6
00 1 00
05 05 04
-1.0 1 -10
02
=31 -15
Low uncertainty
-2.0 T T T T T . .
e B 5 . ; : 3 00 (high confidence)

|deal behavior Deep neural networks

Trust model when x* is close to prran(X.Y)

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020



https://arxiv.org/abs/2006.10108

Self-driving cars

Dataset shift:

e Time of day / Lighting
e Geographical location (City vs suburban)
e Changing conditions (Weather / Construction)

Weather Construction

Image credit: Sun et al, Waymo Open Dataset Downtown Suburban



https://waymo.com/open/about/

Open Set Recognition

Example: Classification of genomic

sequences

High accuracy on known classes is

not sufficient

Need to be able to detect inputs
that do not belong to one of the

known classes

Total number of bacteria classes

1 1

1200

1000 -

800 -

600 -

400 -

200 -+

1995

Time of training
algorithm

- Known classes
(In-distribution)

Bacillus Escherichia -
. ATAAGCCCGCCC . TATTCCGCGCC

. CCCGATAACCCC . CCCGTATTCGC

Classifier trained on
known classes

Testbelongs to
known classes —

‘ High accuracy

Unknown
! »classes (OO0D)
I y
I Testbelongs to

I unknown classes —
' =

| A Wrongly classified
’\
&‘é L\ as known classes

2005
Year

2000

2010 2015 2020

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html



https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

Sources of uncertainty: Model uncertainty

Many models can fit the training data well
Also known as epistemic uncertainty

Model uncertainty is “reducible”
o Vanishes in the limit of infinite data (subject to

model identifiability)
Models can be from same hypotheses class (e.g.
linear classifiers in top figure) or belong to different

hypotheses classes (bottom figure).




Sources of uncertainty: Data uncertainty

e Labeling noise (ex: human disagreement)

e Measurement noise (ex: imprecise tools)

e Missing data (ex: partially observed

features, unobserved confounders)

e Also known as aleatoric uncertainty
e Data uncertainty is “irreducible®”
o Persists even in the limit of infinite data

o *Could be reduced with additional

features/views

Image source: Battleday et al. 2019 “Improving machine
classification using human uncertainty measurements”



https://openreview.net/forum?id=rJl8BhRqF7

How do we measure the quality of uncertainty?
Calibration Error = |Confidence - Accuracy|

Of all the days where the model predicted rain with 80%
probability, what fraction did we observe rain? 1 6°F| °C

e 80% implies perfect calibration
e Less than 80% implies model is overconfident . W

e Greater than 80% implies model is under-confident o~ i



How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

B
ECE=Y_ % lacc(b) — conf(b)]
b=1

e Bin the probabilities into B bins.
e Compute the within-bin accuracy and within-bin predicted confidence.

e Average the calibration error across bins (weighted by number of points in each bin).


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

b=1

Expected Calibration Error [Naeini+ 2015]:

B
ECE = Z % lacc(b) — conf(b)]

Confidence <Accuracy

=> Underconfident

How do we measure the quality of uncertainty?

LeNet (1998) ResNet (2016)
i CIFAR-100 CIFAR-100
’ 1 1 1
By

» 0.8 gl 8.5
9 %ng gl St
g 0.6 “En;é 3 S
3 S 1 S
& 0.4 oy | |ty
o > >
® og . < 1<

' 1 el

0.0 - AT e ‘

100.0 0.2 04 06 08 1.0 0.0 0.2 04 0.6 0.8 1.0

' Bl Outputs Bl Outputs

0.8 | Gap | Gap
5 0 6 .
g Confidence >Accuracy
S 0.4
<

k-

0.0

Error=44.9

=>Qverconfident

0.0 02 04 06 08 1.0 00 02 04 0.6 0.8 1.0

Confidence

Image source: Guo+ 2017 “On calibration of modern neural networks”



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/
https://arxiv.org/abs/1706.04599

How do we measure the quality of uncertainty, practically?

Evaluate model on

out-of-distribution
(OOD) inputs which
do not belong to any

of the existing classes

Max confidence
Entropy of p(y|x)

2EET - EEED
CEETENeEES
Sl NE ¥ O
O P - P
MBI~ VRS
I s oY o [WIAr
LEERRD A6 E
] o o

EEEL O MEEER
B e B o
<

CIFAR-10 (i.i.d test inputs\

CIFAR-10
classifier

e

Confidence on i.i.d inputs

>

/SVHN (0.0.d test inputs)

Confidence on 0.0.d inputs ?



How do we measure the quality of robustness, practically?

Measure generalization to a large collection of real-world shifts. Alarge collection of tasks
encourages general robustness to shifts (ex: GLUE for NLP).

e Novel textures in object recognition.
e Covariate shift (e.g. corruptions).
e Different sub-populations (e.g. geographical location).

Predicted: domestic_cat

Predlcted monkey

Cartoon

Different renditions Nearby video frames Multiple objects and poses
(ImageNet-R) (ImageNet-Vid-Robust, YTBB-Robust) (ObjectNet)



https://gluebenchmark.com/

Neural Networks with SGD

Nearly all models find a single setting of parameters to maximize the probability
conditioned on data.

- EERERE
o
0" = argmaxp(0 | x,y) -
’ -
= argmin —log p(y | x,8) — log p(6) me
I
]

|

Data uncertainty

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!
Image source: Ranganath+ 2016



https://arxiv.org/abs/1511.02386

A Simple Baseline for Improving Uncertainty Calibration

: BE: CerEEEEER
0" = argmaxp(0 | x,y) T _E
\ 7] B |
. o ot O |
Eroblem. results in j.USt f)ne prediction per example I . EEEDE
No model uncertainty | e [ [ e
== =Illlll==
5 EEaEEEEs-
How do we get uncertainty? = E=======%
b [ | [ [

e Probabilistic approach

Ol CE |
o Estimate afull distribution for p(@ | x,y)

e Intuitive approach: Ensembling
o Obtain multiple good settings for @*

Image source: Ranganath+ 2016



https://arxiv.org/abs/1511.02386

Ensemble Learning

e A prior distribution often involves the complication of approximate inference.

e Ensemble learning offers an alternative strategy to aggregate the predictions over a
collection of models.

e Often winner of competitions!

e There are two considerations: the collection of models to ensemble; and the
aggregation strategy.

Popular approach is to average predictions of independently trained models, forming a
mixture distribution.

p(y|x) = KZP y | x,65)

k=1

Many approaches exist: bagging, boosting, decision trees, stacking.
...\What this reminds you in neural networks?

[Dietterich 2000]



https://scholar.google.com/scholar?q=Dietterich%2B2000%2Bensembles&hl=en&as_sdt=0&as_vis=1&oi=scholart

An Old Friend Wears A New Hat: (Monte Carlo) Dropout!
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(b) After applying dropout.

(a) Standard Neural Net

Image source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting

[Gal+ 2015]



https://arxiv.org/abs/1506.02142

Simple Baseline: Deep Ensembles

Combine predictions of M models

|dea: Just re-run standard SGD training but

with different random seeds and average
the predictions / ' \
e Awell-known trick for getting better
accuracy and Kaggle scores Randomly Randomly Randomly

e Bevond accuracy — it is aood for Initialize & Initialize & Initialize &
y y . 9 Train Net 1 Train Net 2 Train Net M
robustness and uncertainty too!!

e The mean of predictions is often \ ' /

more accurate, and the variance of

those predictions reflect “confidence” Randomly Shuffle Dataset M times
e Werely on the facts that the loss ﬁ

landscape is non-convex and SGD

has noise INRULS

[Lakshminarayanan+ 2017]



https://arxiv.org/abs/1612.01474

Deep Ensembles work surprisingly well in practice

0.35-
Method
0.30- wummmm vanilla Emmmmm Dropout
0.25. I LLSVI BN Ensemble
[ LLDropout I Temp Scaling
4, 0.20-
O ol
*0.15- ]
0.10- L | 0 e |
0.05- _—T B > 1R
0.00- e ——

[ Deep Ensembles are consistently among the best performing methods, especially under dataset shift




Table source: Guo+ 2017 “On calibration of modern neural networks”

BBQ  Temp. Scaling Vector Scaling Matrix Scaling
Birds RS- ; Ay 2! At 254 13%
Cars 0.5%

CIFAR-10 0%

CIFAR-10 72%

CIFAR-10 72%

CIFAR-10 —41%

CIFAR-10 .16%

CIFAR-10( ) >.49%

CIFAR-10( ' ] ).09%

CIFAR-10( g AN & 1.44%

CIFAR-10(" : Y - Y < .87%

CIFAR-10(C | & 3.24%

ImageNet ‘

Dataset Model Uncalibrated Hist. Binning Isotonic

ImageNet .
SVHN 17%

20 News ).1%

' ' .58%

Reuters _—y ' -
SST Bina = : .84%
.39%

1 methods.

Table 1. ECE {
The number fo
(k) eXP(zz(k)) A (k) Temperature re- 7. — T (k)
Softmax: USM(Zi) = —% O P; = max O'SM(ZZ') . _ q; — ImMax O'SM(Z,,;/ ) .
Zj=1 exp(zij ) k scaling (beat them all!): k


https://arxiv.org/abs/1706.04599

Inductive Priors & Knowledge: Another Powerful Tool for
Uncertainty & Robustness

What about inductive biases to assist OOD? Image source: Dumoulin & Visin 2016

e Hypothesis: “Representations should be invariant with
respect todataset shift.”

e Data augmentation extends the dataset in order to
encourage invariances.

e More examples: contrastive learning, equivariant
architectures.

Data augmentation requires two considerations:
1. Setof base augmentation operations. (Ex: color distortions, word substitution)

2. Combination strategy (Ex: Sequence of K randomly selected ops.)


https://arxiv.org/abs/1603.07285

Composing a set of base augmentations

xaugmix

!
A g p ¥ A o ‘T,,'
B equalize L0. SN posterize S8

o " y ’ " /

-
.4

Composing base operations and ‘mixing’ them can improve accuracy and calibration under shift.

[Hendrycks+ 2020]



https://arxiv.org/abs/1912.02781

AugMix improves accuracy & calibration under shift

ImageNet Error Across Severities 25ImageNet Calibration Across Severities
80 1| —&— Standard —&— Standard
—~A& - Standard (Ensemble) 9 20 4 -~ Standard (Ensemble)
70 1 —e— AugMix = —8— AugMix
; o
-®- AugMix (Ensemble) - ~®- AugMix (Ensemble)
3 60 - i ol LT
o c
< S
S 50 - ©
i 5 10
40 - S
wn
= 159
30~ s
20 - 0
0 1 2 3 4 5 0 1 2 3 4 5
Corruption Severity Corruption Severity

Data augmentation can provide complementary benefits to marginalization.

[Hendrycks+ 2020]



https://arxiv.org/abs/1912.02781

Takeaways

Uncertainty & robustness are critical problems in Al and machine learning.
Benchmark models with calibration error and a large collection of OOD shifts.
Probabilistic ML, ensemble learning, and optimization provide afoundation.

The best methods: ensemble multiple predictions; imposing priors and
inductive biases; and “lower your temperature” when using softmax

Many future progress are expected — a key knob to make ML “real”



VIL Predictions Are (Mostly) Accurate but Brittle

“pig” (91%) noise (NOT random) “airliner’”’ (99%)

" VR T TR e S T S F e e g T )
iy W, vy /‘: 2 3 15 ’. g 2V o8 -3
> T o G PO e B SRR

[Szegedy Zaremba Sutskever Bruna Erhan Goodfellow Fergus 2013]
[Biggio Corona Maiorca Nelson Smdic Laskov Giacinto Roli 2013]

But also: [Dalvi Domingos Mausam Sanghai Verma 2004][Lowd Meek 2005]
[Globerson Roweis 2006][Kolcz Teo 2009][Barreno Nelson Rubinstein Joseph Tygar 2010]

[Biggio Fumera Roli 2010][Biggio Fumera Roli 2014][Srndic Laskov 2013]



Three commandments of Secure/Safe ML

I. Ghou.
(becal X » /
I1. Gbou ) erve its
outcpt
(beca Training set
1. Gho poisoning Adversarial Examples 1.0 theft e el

(because ot adversarial examples)



Where Do Adversarial Examples Come From?

Differentiable
To get an adv. example

MModel Parameters Input Correct Label

min, loss(0,x,y)

Parameters @

Can use gradient descent
method to find good £




Where Do Adversarial Examples Come From?

Differentiable
To get an adv. example
o/

° y &/
. 7 \Y N \
WA\ >',,/‘?.‘- 7.‘

P )

W 1 N4

| !
+ <.
‘ \

maxs loss(0,x + 6,y) ”"

Parameters 6

Which 6 are allowed?

Can use sradient descent
Examples: § that is small wrt This is an important question

* £,-norm (that we put a5|de)

* Rotation and/or translation ]

* VGG feature perturbation Still: We have to confront
(add the perturbation you need here) (small) fp-norm perturbations



A Possible By-Product of ML Bias-Variance Trade-Off

” Training saanIes > Class A
X X \ X Mode

Adversarial
regions

e i Adversarial
X regions
X » .
X
X X X




Towards ML Models that Are Adv. Robust

[M Makelov Schmidt Tsipras Vladu 2018]

Key observation: Lack of adv. robustness is NOT at odds with
what we currently want our ML models to achieve

Standare generalization:

Adversarially robust

S (x,y)~D

[Qs’zean loss(0,x + 6,y)]

But: Adversarial noise is a “needle in a haystack”



Robust Objectives

* Use the fol Part Il: training a robust classifier

. mvgn E‘ { A \
e Qutermi min max Loss (CU + 0 s Y, 9)
* Inner ma 6 E Sk 0EA
’y Y J
* A. Madry, 4 Part |: creating an adversarial example
Learning vV

(or ensurlng one does not exist)

* A. Sinha, H.
Robustness with Prmupled Adversarlal Training. ICLR 2018

Robust Optimization

Deep

onal



The inner maximization problem

How do we solve the optimization?

L J,vy;0
max Loss ( +0,y;0)

Loss(z + 9,y;0) 1. Local search (lower bound on

objective)
2. Combinatorial optimization
(exactly solve objective)

, 3. Convex relaxation (upper
A bound on objective)




Projected gradient descent

Recall we are optimizing

max Loss (z + 6,y;0) aVsLoss(z + 6, y; 0)

c
Pa

We can employ a projected
gradient descent methodq, take
gradient step and project back into 5*
feasible set A A

§:= P60+ VsLoss(x + 6,y;0)]




The Fast Gradient Sign Method (FGSM)

To be more concrete, take A to be |
the £__ ball, A = {6: 5] . < €}, aVsLoss(z +9,y;0)
SO projection takes the form

PA (5) — Cllp((S, [_67 6]) Pa

As o — 00, we always reach

“corner” of the box, called fast

gradient sign method (FGSM) 5 =il
[Goodfellow et al., 2014] A

6 = €-sign(VsLoss(z + 6,y;0))




Targeted attacks

Also possible to explicitly try to change label to a particular class

max (Loss(a: +0,y;0) — Loss(z + 6, Yyare; 0 ))
< AT

Consider multi-class cross entropy loss

Loss(x 4+ d,y;6) = log Zexp hg(x +0); — hy(z),

Then note that above problem simplifies to

max (hy()y,,,, —holz),)



The outer minimization problem

Inner maximization: Outer minimization:
max Loss (z + 9,y;0 - mm Ifsla’A( Loss (z +9,y;0)
SEA z,ye8 °C
1. Local search (lower bound 1. Adversarial training
on objective)

2. Combinatorial optimization
(exactly solve objective)

3. Convex relaxation (upper 3. Provably robust training
bound on objective)



Danskin’s Theorem

A fundamental result in optimization:

V, max Loss (x + d,y;60) = VyLoss(z + §*,y;0)
=

where 6* = max Loss (z + 6,v;0)
0EA

Seems “obvious,” but it is a very subtle result; means we can optimize
through the max by just finding it’s maximizing value

Note however, it only applies when max is performed exactly



Adversarial training [Goodfellow et al., 2014]

Repeat

1. Select minibatch B

2. Foreach (z,y) € B, compute
adversarial example 6* (x)

3. Update parameters
Pli= Pl Z V,Loss(z + 6*(z), y; 0)

|B| z,yeB

Common to also mix robust/standard
updates (not done in our case)

Test Error, epsilon=0.1
74.4%

41.7%

1.1%|

ConvNet Robust ConvNet
B Clean WFGSM ®mPGD

2.6%
0.9%\ 2.8%




Adv. Robust Generalization Needs More Data

Theorem [Schmidt Santurkar Tsipras Talwar M 2018]:
Sample complexity of adv. robust generalization can be
significantly larger than that of “standard” generalization

Specifically: There exists a d-dimensional distribution D s.t.:

- A single sample is enough to get an accurate
classifier (P[correct] > 0.99)

- But: Need ﬂ(\/a) samples for better-than-chance
robust classifier




Does Being Robust Help “Standard” Generalization?

. | | = s |-
Data augmentation: An effective technique | (= T L S
to improve “standard” generalization Jn-_r %\\ “%/. éﬁ”
Sl | EES | v | B

Adversarial training

An “ultimate” version of data augmentation?

(since we train on the "most confusing” version of the training set)

Does adversarial training always improve
“standard” generalization?



Does Being Robust Help “Standard” Generalization?

Theorem [Tsipras Santurkar Engstrom Turner M 2018]:
No “free lunch”: can exist a trade-off between accuracy and robustness

Basic intuition:

- In standard training, all correlation is good correlation
- If we want robustness, must avoid weakly correlated features

aggregates to a very accurate (but non-robust!) “meta-feature”
\

\)Dj)
—

Weak correlation

Strong (but not perfect)

correlation \@

Standard training: use all of Adversarial training: use only single robust
features, maximize accuracy feature (at the expense of accuracy)




Adversarial Robustness is Not Free

= Optimization during training more difficult
and models need to be larger

= More training data might be required
[Schmidt Santurkar Tsipras Talwar M 2018]

CIFAR-10 . Restricted ImageNet

100 o
75.".\0—\_. m\\‘

0
0 onz 0,08 L] 0.10
100 L . oo W
o £

0 0.2 04 08 o8 1.0

=training

Test Accuracy (%)

Ltraining L.
3 =8

g8 3
8
S

58 .
8
»n =
8
8
o

- Might need to lose on “standard” measures of performance
[Tsipras Santurkar Engstrom Turner M 2018] (Also see: [Bubeck Price Razenshteyn 2018])

-> Other Difficulties such as Robust Overfitting (ICML 2020) etc.



But There Are (Unexpected?) Benefits Too

[Tsipras Santurkar Engstrom Turner M 2018]

Models become more semantically meaningful |

Gradient of Gradient of
standard model adv. robust model




Adversarial Examples Beyond Pixel Perturbations ...

Natural Adversarial Natural Adversarial Natural Adversarial

o

mousetrap” ‘“‘vulture” “orangutan”  “ship” “dog

=

2% ¢

b

“revolver

A ROTATION AND A TRANSLATION SUFFICE:
FOOLING CNNS WITH SIMPLE TRANSFORMATIONS =

u'|  |cos@ —sinf| |u n ou
Logan Engstrom, Ludwig Schmidt, Dimitris Tsipras, Aleksander Madry fU’ o Sin 9 CcOS 9 . v (S v
Massachusetts Institute of Technology

{engstrom, ludwigs, tsipras, madry}@mit.edu

By defining the spatial transformation for some z as 7'(x; du, dv, ), we construct an adversarial
perturbation for x by solving the problem

5m§1x0£(:c',y), for ' = T'(z;6u, év, 6) , (1)



(a) Perturbation-based robustness. In perturbation-
based adversarial robustness, an adversary can per-
turb a datum x into a perceptually similar datum
x?4V := x 4+ 4. When ¢ is constrained to lie in a set
A:={6eR*: |16]|, < €}, the underlying geom-
etry of the problem can be used to find worst-case
additive perturbations.

Adversarial Examples Beyond Pixel Perturbations ...

X, = G(x, 61

xz = G(x, 62)

(b) Model-based robustness. In our paradigm,
models of natural variation can be though of char-
acterizing a class of learned image manifolds B(x). By
searching over these manifolds, in the model-based
robust deep learning paradigm, we seek images
x" € B(x) that have been subjected to high levels of
natural variation.



Adversarial examples...

. beyond deep learning

Logistic Regression Nearest Neighbors

r;{ B

R RoRo

P g g o 3
qo  OR

Support Vector Machines Decision Trees

. beyond computer vision

259 , PX=Malware]=0.90
S ad P[X=Benign] = 0.10

o ®®  P[X*=Malware] =0.10
44 » P[X*=Benign] = 0.90




Target instances from Fish class

Poisoning Attack

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Fig. 1. Linear SVM classifier decision boundary for a two-class dataset with support vectors and clas|
Decision boundary is significantly impacted if just one training sample is changed, even when that san|

(right).
Let f(x) denote the function
(before the softmax layer). W

Poisons
made for
dog class
from fish
bases

input since it encodes high-leve.: suinanuc rvatuice. Luv w wiv wgu vuiupivaiy auu uvuLvay Us
it is possible to find an example x that “collides” with the target in feature space, while simultaneously

being close to the base instance b in input space by computing

‘Shafahi+ 2018 p = argmin [|£(x) — FO)I3 + Bx — bl M



https://arxiv.org/abs/1912.02781

Model Theft

* Model theft: extract model parameters by queries
(intellectual property theft)
* Given a classifier F

* Query F on q4, ..., q,, and learn a classifier G
cF=G

* Goals: leverage active learning literature to
develop new attacks and preventive techniques

* Paper: Stealing Machine Learning Models using Prediction APIs,
Tramer et al., Usenix Security 2016

* Solution: Nasty Teacher, ICLR 2021, et. al.



Fake News Attacks

Abusive use of machine learning:

Using GANSs to generate fake content (a.k.a deep
fakes)

Strong societal implications:

elections, automated trolling, court

evidence ... Generative media:

e Video of Obama saying things he
never said, ...

e Automated reviews, tweets,
comments, indistinguishable from
human-generated content




Towards (Adversarially) Robust ML

= Algorithms: Faster robust training + verification [xiao Tjeng Shafiullah M 2018],
smaller models, new architectures?

- Theory: (Better) adv. robust generalization bounds,
new regularization techniques

- Data: New datasets and more comprehensive set of perturbations
Major need: Embracing more of a worst-case mindset

- Adaptive evaluation methodology + scaling up verification

[ (JRobustML

(robust-ml.org)

Further Read: https://adversarial-ml-tutorial.org/ hans



https://adversarial-ml-tutorial.org/

Synthetic Data: Towards Infinite Training Data Variations

iy T A L
g M el Rl 3
o e - F
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KT 2PN 0328




Why Synthetic Training

Collections of real data are costly
Massive real image
Classification / Segmentation / Detection

Synthetic data are relatively cheap to generate

99



Why Synthetic Training

* In some cases, synthetic data is all you have...
* EyeGaze / Depth / Flow /3D Mesh reconstruction / Robotics

Example Navigation by Trained Agents

100



Synthetic Simulation Empowers Some Most
Important Applications

* Autonomous Driving: Omniverse, ISAAC, DRIVE Sim, etc.

DRIVE Sim

101



Synthetic Simulation Empowers Some Most
Important Applications

* Autonomous Driving: Omniverse, ISAAC, DRIVE Sim, etc.

DRIVE Sim
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Synthetic Simulation Empowers Some Most
Important Applications

* Medical Image Analysis: cover more corner cases, resolve privacy concerns...

Generator

Semantic Map Generated Image

E .

e

2 §il

EOE N 3
[ k [ =

::">8§& >§81§~—> ™ -

= ‘

£ -

J—H
L->5 ;)

Real Image
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Domain Randomization (IROS'17)

* To handle the variability in real-world data, the simulator parameters
(lighting, pose, object textures, etc) are randomized in non-realistic
ways to force the learning of essential diverse features.
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10
10
10
10

10

6
10

Can We Do Better than Random??

* Learn to simulate better data for a particular downstream task?
* Learn to simulate edge cases?

150

100

Number of examples

50

Dangerous Not dangerous

Dangerous Not dangerous gari
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Learning to Simulate (ICLR’19)

> We want to solve the following bi-level optimization problem. Loss of main task model
_. trained in simulation and
// evaluated on real data

Simulation parameters

_‘\\\\h _ argmlr{ Z E(y he(wg (1/))))} ——» meta-learner

(x,y)EDyal
= . main task model hg
s.t. | 07 (¢) = argmin > L(y.he(®.0)), —+ trained on simulated

- " (-’Izy)é[Dq(x.w ) J 5 data

-

”

-~
N

Main task model parameters :
Dataset generated by simulator

~
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Learning to Simulate (ICLR’19)

* Train the policy of selecting simulator parameters, using policy

reward R

Main Task
Simulator Net K
parameters © training dataset etwor

sampled from

Q(x,y|0©)

-~
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Are better simulators enough?

Models overfit to any difference High quality is expensive

Virtual KITTI Dataset

Multi-object tracking accuracy: Jungle Book:
Sim: 63.7% 30M render hours
Real: 78.1% 19 hours per frame

Virtual Worlds as Proxy for Multi-Object Tracking Analysis 800 artlst-years of effort
[Gaidon*, Wang*, Cabon, Vig, 2016] Jungle Book, 2016



Supervised domain adaptation

Fme—tumng

Slmulatlon Hardware

| Transition Dvnml
|
| PolcyParamet ers
|
16=T - bl - r

Learning Omnidirectional Path Following Using Dimensionality
Reduction [Kolter, Ng, 2003]

Efficient Reinforcement Learning for Robotics using Informative
Simulated Priors [Cutler, How, 2015]

Sim-to-Real Robot Learning from Pixels with Progressive Nets [Rusu
et al. 2016]

Deep Predictive Policy Training using Reinforcement Learning
[Ghadirzadeh, Maki, Kragic, Bjorkman, 2017]

Iterative learning control

Low-Fidelity pu
and/or Cost X2
L l ! jl

Exploration heuristics

Wy

Learned (certain) model parameters

Using inaccurate models in reinforcement learning [Abbeel,
Quigley, Ng, 2006]

Reinforcement learning with multi-fidelity simulators [Cutler,
Walsh, How 2014]

Superhuman performance of surgical tasks by robots using
iterative learning from human-guided demonstrations [Van Den
Berg, Miller, Duckworth, Hu, Wan, Fu, Goldberg, Abbeel, 2010]
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(Less) supervised domain adaptation

Weakly Supervised Self-Supervised  Unsupervised

Target image (GtyScapes)

-F]

Scurce images (SVHN| Adapted scurce images (Owes)

™

(a) Synthetic Images - ‘1” o "l"g" N

Adapting Deep Visuomotor Representations A Self-supervised Learning System CyCADA [Hoffman, Tzeng, Park, Zhu,
with Weak Pairwise Constraints [Tzeng, Devin, for Object Detection using Isola, Saenko, Efros, Darrel, 2017]
Hoffman, Finn, Abbeel, Levine, Saenko, Darrell, Physics Simulation and Multi-view Using Simulation and Domain
2016] Pose Estimation [Mitash, Bekris, Adaptation to Improve

Boularias, 2017] Efficiency of Deep Robotic Grasping

[Bousmalis et al., 2017]
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" * Automated Synthetic-to-Real Generalization
. ’

ICML 2020 (also a NVIDIA GTC talk)
o » Wuyang Chen, Zhiding Yu, Zhangyang “Atlas” Wang, Anima Anandkumar



Previous solutions: Heuristic Hand-tuning

95 1
—~ 50 7]
=
©
5
A 45 1
“©
Q
& 401
N
>
8 351 \
§ == Small LR for all layers \
o == == | arge LR for all layers \ v
< . -~
30 Train FC only \ P NS -~
(backbone fixed) \ / m——
95 4 - Small LR for backbone \ /
Large LR for FC \ /I
e |BN-Net \
1 6 11 16 21 26

Epoch (Synthetic Training)



ImageNet as Proxy Guidance

Why early stopping?
=>» Keep weights close to ImageNet initialization.

We minimize Lg;: new model vs ImageNet initialization

=» ImageNet as proxy guidance in syn2real training.

0,

/7 HS,O o LKL
Synthetic Old Task
Image x; \ (ImageNet)

Frozen 05 o LXE
R 6. New Task

" (Synthetic)
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ImageNet as Proxy Guidance

Why early stopping?
=>» Keep weights close to ImageNet initialization.

We minimize Lg;: new model vs ImageNet initialization

=» ImageNet as proxy guidance in syn2real training.

55 60.0 1

— 501 —

= .E 595

(2} (2}

£ IS

3] 2

- Proxy Guidance — 500

() ()

& 40 \ x

~ -~ -

= AN =

>, Se o > 58.5

9 35 = g

é == Small LR for all layers \ é

o - Qo

< 50l #a'_ge éCR f°'| all layers \‘ oo~ < 58.0 — = Proxy guidance + large LR for all layers

rain only -’ .
= (backbone fixed) \ / SN —————— == Proxy gu!dance + small LR for all layers
Small LR for backbone (4 Proxy guidance + small LR for backbone
By == Large LR for FC \ /I 57.5 Large LR for FC
== |BN-Net \ = Proxy guidance + IBN-Net
1 6 11 16 21 11 16 21 2

Epoch (Synthetic Training)

Epoch (Synthetic Training)




L20: automating layer-wise learning rates

Why small learning rate?

=>» Keep weights close to ImageNet initialization.

But how small for which layer?

=>» L20 (learning-to-optimize): automatic control of layer-wise learning rate

~—jupdates g:ggt;
SGD — = [ s =

Block C

Model M

 Lyxpe

Policy

Ne+1
aqt+1 T
azt+1
— a,., = -+ - O & Ny
Ac,t+1
Actions:

LR scale factors



Automated Synthetic-to-Real Generalization (ASG)

Why small learning rate?

=>» Keep weights close to ImageNet initialization

But how small for which layer?

=>» L20 (learning-to-optimize): automatic control of layer-wise learning rate

61.0 1

ot [ <)
o0 © © & =
[ o ot o [
L !

Accuracy % (Real Domain)

o
b
o

= ASG

ot
3
o

Proxy guidance + small LR for backbone
Large LR for FC

=== Proxy guidance + random policy

1 6 11 16

Epoch (Synthetic Training)

2%

mloU % (Real Domain)

Do
o
s

26

N}
=
L

(3]
V)
s

—_
oo
L

—
D
s

= ASG

Large LR for FC
=== Proxy guidance + random policy

— Small LR for backbone
Large LR for FC

oxy guidance + small LR for backbone

Epoch (Synthetic Training)
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Action Behavior of RL-L20 Policy

Backbone (ImageNet pretrained): closer to L; =2 smaller LR

Projection head: large LR

..................... 10
o AN

. convl = convb
ConV1 E conv2 — cONV6&.7
: Convz : 8 -_-. zz::g == projection_upsampling
pretreined Conv3 E ——~———— | projection head
Conv4 % 6
Conv5s E conv6&7
..................... o
Lk, 1 - !
Conv6&7 3
<C
)
[ Projection conv3,4
Upsampling I 0 -
v 1 11 21 31 41
Output Epoch (Policy Training)
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Why ASG Works? Retaining ImageNet Information

# Model Visda-17 ImageNet

1. Large LR for all layers 28.2 0.8
2 + our Proxy Guidance 58.7 (+30.5) 76.2(+754)
Small LR for backbone
> and large LR for FC .3 2501
4, + our Proxy Guidance 60.2 (+10.9) 76.5(+43.4)
2 Oracle on ImageN et? 53.3 (+4.0) 77.4
6. ROAD (Chenetal., 2018) 57.1 (+7.8) 77.4
e Vanilla L2 distance 564 (+7.1) 49.1
8. SI (Zenke et al., 2017) 57.6 (+8.3) 53.9
9. ASG (ours) 61.5 161
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ASG Benefits Domain Adaptation & Self-Training

o DISTRIBUTIONALLY ROBUST LEARNING FOR UNSU-
 ASG serves as better initialization PERVISED DOMAIN ADAPTATION
Haoxuan Wang * Angqi Liu * Zhiding Yu

1. ImageNet =» Self-training for DA
. . Shanghai Jiao Tong Universit Caltech NVIDIA
2. ImageNet = ASG = Self-trammg for DA  reenccesses ssnen | Gnciiiteesssch.edl  EhdGLAGTERCAES, Con

Yisong Yue Anima Anandkumar
Caltech Caltech & NVIDIA
Method TgtImg  Accuracy yynefeatrech. edu erllr;igliiri:ligivig?a .com
Source-Res101 (Zou et al., 2019) X 51.6

CBST (Zou et al., 2018) 7 76.4 (0.9) — _Mehwd . [ Wem
MRKLD (Zou et al., 2019) K 77.9 (0.5) e e | 2
MRKLD + LRENT (Zou et al., 2019) & 78.1(0.2) MCD (st || 1"
ADR (Saito et al.}|2018a} 74.8
ASG (ours) X 61.5 CBST (Zou et al.|[2020} 76.4
ASG + CBST v 82.5 (0.7) CRST (Zou et al.| 2020} 78.1
ASG + MRKLD v 84.6 (0.4) AVH (Chen et al.|[2020a) 81.5
ASG + MRKLD + LRENT v 84.5(0.4) DRS'T (proposed) 83.75
ASG (Chen et al.}[2020b} 61.17
CBST-ASG (Chen et al.}j2020b} || 82.23
CRST-ASG (Chen et al.}[2020b} || 84.21
DRST-ASG (proposed) 85.25
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Follow-up: Contrastive Syn-to-Real Generalization
(ICLR 2021)

* Synthetic images leads to collapsed feature space!

1.0

1.0

. 1.0

1.0 1o, \ g
0.8 0.8

0.5 1
0.5 |
0.5 o 6
0.6 .
OO‘ 00. 00'
0.4 0.4 .
—0.51 —0.51 —0.51
0.2 0.2 2
-1.01 —1.0 —1.01

0

0.0

0.0

1.0 -05 00 05 1.0 -1.0 =05 0.0 05 1.0

(a) ImageNet pre-trained (real). (b) Trained on VisDA-17 valida- (c) Trained on VisDA-17 training
(Es = 0.2541) tion set (real). (Es = 0.3355) set (synthetic). (Es = 0.4542)

Figure 2: Feature diversity in R? with Gaussian kernel density estimation (KDE). Darker areas have more
concentrated features. F.: hyperspherical energy of features, lower the more diverse.
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ImageNet Distillation + Feature Diversity

* Synthetic-to-real with a “push and pull” strategy

o
_ = o l,+ l,— l,—
X1, Xk fe,o 4 Zy 2y
‘U+ \
. 4
synthetic " h
Y > pull Y Feature Distance : 5% \’/w
— F \ synthetic
— > images h > zMe
— (\;\“\ va
fe

‘ .
| f L Contrastive
&

=>4

frozen frozen

updated A T‘ f c— L syn updated o fC
' (Synthetic)

Lsyn
—— (Synthetic)

(a) (b)



Results: Feature Diversity vs Generalization

* Model preserves diverse features =» generalize better on real domain

Table 1: Generalization performance and hyperspherical energy of the features extracted by different models
(lower is better). Dataset: VisDA-17 (

?

) validation set. Model: ResNet-101.

Model FOWET Accuracy (%)
0 1 2

Oracle on ImageNet’ - - - 533

Baseline (vanilla synthetic training) 0.4245 1.2500 1.6028 49.3
Weight [2 distance ( 0.4014 1.2296 1.5302 56.4
Synaptic Intelligence ( 0.3958 1.2261 1.5216 57.6
Feature (2 distance ( | 0.3337 1.1910 1.4449 57.1
ASG ( | ) 0.3251 1.1840 1.4229 61.1
CSG (Ours) 0.3188 1.1806 1.4177 64.05

123



Results: Segmentation

building wall | i traffic 1gt traffic sgn ignored
person rider car motorcycle bike

* GTA5=>»Cityscape:

Table 5: Comparison to prior domain generaliz

Methods

No Adapt
IBN-Net (Pan et al., 201§

No Adapt
Yue et al. (Yue et al., 201!

No Adapt
ASG (Chen et al., 2020b

No Adapt
CSG (ours)

No Adapt
Yue et al. (Yueetal., 201, ...

No Adapt ResNet-101 27.94
ASG (Chen et al., 2020b) 32.79

No Adapt 28.94
CSG (ours) 38.88

4.85

9.94
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Future Works

* More applications: Gaze, Robotics, Medical Images, etc.
* Joint training with domain adaptation.

* Better leveraging multiple sources
* |abeled real domain (e.g., ImageNet)
* labeled synthetic domain (e.g., Driving simulators)

* Unlabeled target real domain (e.g., Real driving photos, but unannotated)
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